Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies.

نویسندگان

  • Katja Hansen
  • Grégoire Montavon
  • Franziska Biegler
  • Siamac Fazli
  • Matthias Rupp
  • Matthias Scheffler
  • O Anatole von Lilienfeld
  • Alexandre Tkatchenko
  • Klaus-Robert Müller
چکیده

The accurate and reliable prediction of properties of molecules typically requires computationally intensive quantum-chemical calculations. Recently, machine learning techniques applied to ab initio calculations have been proposed as an efficient approach for describing the energies of molecules in their given ground-state structure throughout chemical compound space (Rupp et al. Phys. Rev. Lett. 2012, 108, 058301). In this paper we outline a number of established machine learning techniques and investigate the influence of the molecular representation on the methods performance. The best methods achieve prediction errors of 3 kcal/mol for the atomization energies of a wide variety of molecules. Rationales for this performance improvement are given together with pitfalls and challenges when applying machine learning approaches to the prediction of quantum-mechanical observables.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast and accurate modeling of molecular atomization energies with machine learning.

We introduce a machine learning model to predict atomization energies of a diverse set of organic molecules, based on nuclear charges and atomic positions only. The problem of solving the molecular Schrödinger equation is mapped onto a nonlinear statistical regression problem of reduced complexity. Regression models are trained on and compared to atomization energies computed with hybrid densit...

متن کامل

Modeling of molecular atomization energies using machine learning

Atomization energies are an important measure of chemical stability. Machine learning is used to model atomization energies of a diverse set of organic molecules, based on nuclear charges and atomic positions only [1]. Our scheme maps the problem of solving the molecular time-independent Schrödinger equation onto a non-linear statistical regression problem. Kernel ridge regression [2] models ar...

متن کامل

Learning molecular energies using localized graph kernels.

Recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global ...

متن کامل

Learning Invariant Representations of Molecules for Atomization Energy Prediction

The accurate prediction of molecular energetics in chemical compound space is a crucial ingredient for rational compound design. The inherently graph-like, non-vectorial nature of molecular data gives rise to a unique and difficult machine learning problem. In this paper, we adopt a learning-from-scratch approach where quantum-mechanical molecular energies are predicted directly from the raw mo...

متن کامل

Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical Space

Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simpl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of chemical theory and computation

دوره 9 8  شماره 

صفحات  -

تاریخ انتشار 2013